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Abstract
When a human activity requires a lot of expertise and very

specialized cognitive skills that are poorly understood by the
general population, it is often considered ‘an art.’ Different
activities in the security domain have fallen in this category,
such as exploitation, hacking, and the main focus of this paper:
binary reverse engineering (RE).

However, while experts in many areas (ranging from chess
players to computer programmers) have been studied by
scientists to understand their mental models and capture what
is special about their behavior, the ‘art’ of understanding
binary code and solving reverse engineering puzzles remains
to date a black box.

In this paper, we present a measurement of the different
strategies adopted by expert and beginner reverse engineers
while approaching the analysis of x86 (dis)assembly code, a
typical static RE task. We do that by performing an exploratory
analysis of data collected over 16,325 minutes of RE activity
of two unknown binaries from 72 participants with different
experience levels: 39 novices and 33 experts.

1 Introduction

Researchers of different fields have studied, from a cognitive
perspective, how humans perform several relevant activities
with the goal of better understanding, improving, or automating
field-related processes. For instance, in the area of computer
science, many experiments have been conducted to study the
mechanisms behind human’s decisions in several tasks, rang-
ing from program comprehension [30, 43] to human-computer
interaction [7, 27], and from problem solving [12, 33] to com-
puter security [34,54]. The crossover between the human mind
and computer science has also resulted in the creation, and in
the recent rapid evolution, of the field of artificial intelligence.

On the one hand, fully autonomous systems have already
replaced humans in several security-related tasks including,
among the others, host and network-based attack detec-
tion [37, 48, 59], malware classification [35, 41, 50] and

phishing detection [4, 25, 36]. On the other hand, other areas
are still mostly human-driven. For instance, binary reverse
engineering (RE) is still performed entirely by highly skilled
security experts. Machines play an essential role in the
process in the form of tools to unpack, disassemble, emulate,
and perform binary similarity. However, humans are still
responsible for “understanding” the code, which is the main
goal in problems such as malware analysis or vulnerability
discovery. This requires considerable expertise, together with
a long and tedious manual effort. Unfortunately, the limited
number of expert reverse engineers in the world is insufficient
to cope with our society’s security needs and the continuous
growth in the amount of released software. The recent DARPA
Cyber Grand Challenge (CGC) drove progress in computers’
ability to reason about program binaries autonomously and
discover vulnerabilities. However, these programs are still far
from being able to compete against RE experts1.

To overcome this problem, we believe it is fundamental to
first understand how humans approach and solve static RE
tasks. The comprehension of the most effective RE strategies
used by expert humans can drive further research in the
development of automated approaches, but it can also help
design tailored training programs that can increase the number
and the effectiveness of our experts.

Let us use a simple analogy to introduce the motivation for
our work. When a professional chess player decides her next
move, she has hundreds of millions of possible combinations
to evaluate. However, previous research on the human brain
of chess players has shown that this is not the way she reasons.
Her brain can instead recognize patterns and naturally focus
only on a handful of possible “good” moves. Now think about
an expert reverse engineer. Similarly to a chess master, she
also does not “evaluate” every single line of assembly code in a
program, but she just skims through the code, focusing only on
those critical parts to understand the code’s logic. We believe

1The 2016 DEF CON CTF final put the best DARPA cyber-reasoning
system (Mayhem [17]) against human teams. The supercomputer ended up
in the last position [1] (even on simplified challenges explicitly written to
accommodate the limited architecture supported by the machine).



that her primary skill is not to read faster every single basic
block, but instead that she does not waste time reversing the
ones that are not important for her task. In other words, she can
see patterns where others can only see endless lines of code.

Sadly, today we do not know whether this hypothesis or any
other hypothesis about how RE experts think is correct. At the
2020 Usenix Security conference, Votipka et al. [53] presented
the first human study about RE. This work inspired our follow-
up study, where the main focus is restricted to static RE (from
now on used alternatively with RE) from the perspective of as-
sembly code comprehension. Our goal is to investigate a set of
hypothesis by means of quantitative measurements and statisti-
cal tests conducted on fine-grained recordings of real RE tasks.

To accomplish that, we try to answer the following research
questions:
• What do experts do differently from novices?
• Do experts/novices share particular strategies to explore

binary code?
• How are these strategies linked to the binary code

elements (e.g., functions, basic blocks)?
• Is any particular strategy correlated with better RE

performances?

To recruit a sufficient number of geographically-distributed
participants, we designed an online platform that mimics the
UI of traditional interactive disassemblers. We then used our
platform to record the fine-grained behavior of 72 reversers
while they solved two different reverse engineering exercises.
In total, we collected 272 hours of binary reverse engineering
activity, which we then analyzed to identify patterns and strate-
gies that we can use to model the ‘experience’ of a reverser.

The results of our experiments allowed us to confirm that
experts indeed visit less basic blocks than beginners, and they
are also able to dismiss on average 22% of the blocks they visit
in under two seconds. While novices tend to re-visit the same
parts of the code multiple times, experts gain more information
during their first visit. We also identified several exploration
strategies, both at the basic block and the function level, that
seems positively correlated with experience. For example,
beginners are more likely to explore a binary ‘horizontally,’
while more skilled reversers are more likely to proceed in a
vertical way.

These are only a few examples of the many features we
investigate in this paper to characterize the static reverse engi-
neering process. We believe that this fascinating area of system
security, where human experience is highly regarded but little
understood, can help our community to better understand the
mechanics behind the cognitive aspects of reverse engineering.

2 Related Work

To the best of our knowledge, only four studies have been
conducted so far on human behaviors in the context of reverse
engineering [11, 15, 46, 53].

One of the first studies was conducted by Sutherland et
al. [46] in 2006 to demonstrate that the education/technical
knowledge and the ability to reverse engineer simple binary
files are positively correlated. In 2012, Bryant [11] performed
a semi-structured interview with the addition of in-place
observations during the RE sessions to investigate four experts
approaching typical RE scenarios, such as breaking the
protection scheme of a toy binary. The outcome is a precise
observation of the skills, mental flows, and knowledge-based
techniques that the subjects exhibit while reversing a binary.
Interestingly this work tries to be the bridge between the source
code comprehension community and the RE one, by studying
how reverse engineers make use of assembly patterns.

In 2018, Claire et al. [15] proposed RevEngE, a framework
to monitor reverse engineering from several points of view.
The framework is based on an instrumented virtual machine
that registers events such as spawning a new process, focusing
on a window and mouse clicks. The goal of this work was
to describe a system that acts as a base for an observational
study but the paper does not contain any measurements about
how reverse engineers perform their activities. Even though
the authors did not perform any experiments, the study still
deserves a special attention because it proposes an approach
which is suitable to perform a quantitative study of RE.

Finally, the recent work of Votipka et al. [53] is what we can
consider as the first human study about RE, focusing on what
high-level process reverse engineers follow and what technical
approaches they adopt. The authors’ goal was to improve the
design of RE tools to make them more usable and intuitive.
However,due to the lack of prior work outlining REs’ processes
and no theoretical basis for building quantitative assessments,
the authors also performed a number of semi-structured inter-
views in which 16 participants recalled anecdotes of a binary
they had reverse engineered in the past. This provides technical
details about their strategy and experience, including when
they switched from a tool to another, which hypothesis they
formulated, and which type of documentation they consulted.

If the literature covering RE is scarce, a vast amount of work
has been performed instead in the program comprehension
field. Indeed, RE can be seen as a program comprehension
problem applied to assembly code, with the goal of recovering
the high-level abstractions needed to understand the program
logic. For this reason, we collect here the most critical human
studies related to program understanding. One of the leading
research directions in program comprehension shows that
programmers adopt non-linear ways to interpret source
code, reasoning at a level of abstraction higher than the code
itself [5, 6, 10, 29, 30, 43]. A well-known model about these
high-level representations is what researchers refer to as bea-
cons: beacons are patterns that experienced programmers can
recognize when reading the source code [22,28,40]. The utility
of beacons is mainly related to assessing some hypotheses that
developers do about some unknown parts of the program, such
as when they need to maintain some code base, as described



by Littman et al. [32]. Alternatively, Gugerty [21] argues
that developers can use debuggers to verify some behaviors
within the source code they are analyzing (e.g., by checking
whether a variable contains the expected value at some point
of the execution). It is also worth mentioning that some of
these papers study program comprehension by performing
a comparison between experts and novices [20, 21, 56]. We
believe this to be a critical factor in understanding the impact
of the experience, and this methodology served as inspiration
for the experiments we present in this paper.

Finally, few studies have investigated the usability of RE
tools. For instance, researchers have looked at improving
the usability of decompilers [24, 57], showing that better
variable naming and a reduced number of GOTOs affected
positively the readability of the pseudocode. In the context
of vulnerability discovery, Do et al. [18] proposed a static
analysis framework that allows the developers to write code
and run in parallel the static analyzer to help programmers
to better manage the large number of alerts generated by the
tool. In 2017, Shoshitaishvili et al. [45] showed that the com-
munication between a fuzzing engine and non-skilled reverse
engineers can increase the rate of discovered vulnerabilities
by taking advantage of human intuition.

3 Scope of the study

Reverse Engineering is a broad topic that covers several differ-
ent activities. Therefore, in this section, we emphasize what
aspects we studied in our work and the actual focus of the paper.

In system security, we refer to binary RE as the activity by
which a human, the Reverse Engineer, analyzes an executable
file, either in whole or in part, to recover design and implemen-
tation information useful to understand the program function-
alities. Depending on the context (e.g., malware analysis, vul-
nerability discovery, firmware analysis), the output of a reverse
engineering analysis can be different. However in all cases the
analyst is interested in reconstructing the logic of the program
and in understanding which conditions must be met to reach
a specific location in the code — which can be related to a bug
or to a suspicious behavior in the case of malicious files [58].

Independently from its goal, the RE process usually involves
different phases, and different tools are used to inspect the
program and collect the required information. Some popular
frameworks that support the analyst in this complicated task are
interactive disassemblers, such as IDA Pro [3] and Ghidra [2].
These tools combine multiple functionalities (e.g., a disas-
sembler, a decompiler, a debugger) in an interconnected and
interactive user interface, which allows the analyst to inspect an
enriched representation of the binary code. Reverse engineers
often rely on a combination of both static analysis and dynamic
analysis. The former consists of detailed observation of the
binary components (e.g., functions, basic blocks, assembly
instructions) to reconstruct the program’s behavior without ex-
ecuting it; the latter relies instead on a step-by-step observation

of the way a binary interacts with the memory and the operating
system at runtime. In this study, we focus our investigation on
the core activity that is part of any binary RE process: the static
code understanding as presented by interactive disassemblers.

Although this activity represents only one portion of the RE
process, we believe it deserves a special attention for several
reasons. First, it is particularly interesting as the low-level
nature of the Assembly language forces the human mind to
make an additional effort when reading the instructions. In
fact, the reverser needs to understand the effects of what she
reads on the machine that will execute the code as well as
mentally reconstruct high-level patterns (such as loops and
branch conditions) and data types.

Moreover, this approach mirrors the initial studies of the pro-
gram comprehension community, where various authors ini-
tially focused on how users read source code rather than directly
embedding debuggers in their experiments [5, 6, 10, 29, 30].
For these reasons, we decided not to include any decompil-
ers/debuggers in our pipeline, focusing instead on an in-depth
analysis of the static assembly code comprehension process.

4 Methodology

To conduct a detailed investigation of how humans perform a
RE task, we needed to replace the interview format adopted by
previous studies with a fine-grained observation of subjects’
actual behavior when requested to perform different tasks
related to binary reverse engineering.

While the required data could be easily collected in a lab, for
instance,by using eye-tracking equipment to monitor the partic-
ipant behavior [9,16,38,49], this approach would introduce sev-
eral problems. First of all, skilled reverse engineers are rare and
remotely-accessible experiments are required to collect enough
participants with different backgrounds. Second, even simple
RE exercises require hours of concentration, which is difficult
to achieve while under observation in a lab (especially when the
candidate needs to keep her head stable to allow for proper mon-
itoring). Therefore, we opted for implementing a web-based
platform specifically designed to conduct our experiments.

The platform needs to be capable of extracting many low-
level metrics, such as how much time a person spends looking
at each basic block, how she explores and navigates the binary
program, and how she annotates and manipulate the assembly
code (e.g., by renaming functions and variables) along the way.
Moreover, the interface needs to closely resemble the inter-
face of existing reverse engineering tools (such as IDA Pro,
Ghidra, and Binary Ninja) to let the users interact with a famil-
iar environment. Finally, the system should incorporate special
techniques (such as Restricted Focus Viewer [26] to blur basic
blocks that are not currently selected) and a variety of instru-
mentations to collect a rich set of raw low-level information.

The low-level metrics extracted by our online platform act as
basic blocks for the subsequent analyses and characterizations.
In this second phase, we manually reviewed the collected data



Figure 1: Part of the UI of our reverse engineering framework
in the code navigation mode showing on the left the functions’
list and on the right the CFG of the selected function

to identify high-level skills starting from the low-level metrics.
In this respect, a significant challenge is that we did not know
a priori which skills were more important than others and in
which context they may become relevant for solving a reverse
engineering task.

4.1 Online Platform

Our dedicated online platform provides users with an interface
and a set of functionalities, which mimic common interactive
disassemblers. The system required users to register an
account to allow them to take breaks and perform different
tasks at different points in time. After the registration, a
“Welcome” page described the various tests and guided the
participants through the system’s functionalities. The user
could then select one of the available tests and proceed with it.

A snapshot of the interactive RE interface is presented in
Figure 1. The left panel shows the list of the functions that are
present in the binary as well as those imported from external
libraries (such as printf). When the user visits a function, e.g.,
sub_40089a in Figure 1, the system highlights it with a green
bar and displays the list of code cross-references (Xrefs) below
the function name. Xrefs are divided into Xrefs-from (func-
tions containing a call instruction that transfers the control to
the visited function), and Xrefs-to (functions called within
the body of the visited function). The user can control the appli-
cation by using the mouse (by panning, zooming, clicking on
links, accessing a contextual menu with the right mouse button)
or the keyboard (by using common shortcuts taken from IDA
Pro for moving back and forward, rename variables and func-
tions). The right panel instead is in charge of showing the Con-
trol Flow Graph (from now on CFG) of the disassembled func-
tion where we decided to resolve library calls with their symbol
name and to replace strings’ addresses with the string itself.
Our UI also includes a call graph view, where the users can vi-
sualize the relationship between the function inside the binary.

Enabling the user to have a complete view of all basic blocks
at the same time would not allow us to track her progress
through the program at the required granularity. Therefore,
by taking inspiration from similar experiments performed in
the code comprehension community to measure the user at-
tention [8, 26], we decided to implement a Restricted Focus
Viewer [26] (RFV) solution. This technique provides results
comparable with eye-tracking methodologies by dynamically
blurring parts of the screen and letting users control the visible
area. In our case, only one basic block at a time is readable
while all other ones are blurred. For instance,on the right side of
Figure 1, the central basic block (from now on BB) is unblurred,
whereas the ones above and below are blurred. When the user
moves the mouse over a different BB, the system immediately
shows its content and re-sets the previous one in a blurred state.

The main disadvantage of this solution is that it can delay the
user activity and, as discussed in Section 6.4, it can also prevent
rapid glances over different parts of the screen. Even though
we are aware of the fact that RFV represents a limitation of our
work (as detailed in Section 8), it represents the only solution
to precisely measure the basic blocks observed by each
participant, while enabling our experiments to be conducted
online with users located in different countries.

For each action the user performs over the visible element,
the framework generates an event and sends it to our backend
server. These events include New function access (when the
user clicks on a function name), New basic block visit (mouse
over the new basic block), Function rename (right click or
keyboard shortcut), Variable rename (right click or keyboard
shortcut), Comment (right click or keyboard shortcut), Follow
the jump to an address (double click), Jump to address (double
click on the address), Move backward to the previous basic
block (keyboard shortcut), Follow Xrefs-to or Xrefs-from (click
on the desired xref), and Solution submission (click on the
dedicated link). For each of the cases mentioned above, the web
interface generates a JSON request containing a timestamp,
the event type (i.e., the action), the position in the binary (i.e.,
the function address and the BB), and depending on the action
type, the arguments. For example, when the humans rename a
stack variable, the JSON string will contain the new proposed
name and the old stack offset as further arguments.

All the events, along with the user’s changes on the code
(such as renamed objects, comments, and previously accessed
locations), are stored in a database for further analysis.

4.2 Challenges Design

The main problem we encountered when designing our
tests was to find a balance between the complexity of the
binaries, the amount of data we could collect from them, and
consequently the number of people that we could recruit.

Modeling the complexity of a RE task is not easy because
a binary could include many features that make the process
of understanding its internals more complex. For instance, ob-



fuscated code would require dynamic analysis or access to the
binary file for implementing a de-obfuscation algorithm, thus
resulting in less data that could be collected by our platform. We
also had to design our tasks to be independent from the domain
of the different experts; for instance a challenge about pack-
ing would be easier for malware experts than for vulnerability
researchers. We decided instead to present binaries that imple-
ment common functionalities that can be found in any domain.

That being said, there are many potential strategies to
provide a measure of the complexity of our tasks. A possible
way to accomplish this goal is to rely on the complexity of the
source code, as done by [46] to formally describe the difficulty
of their binary challenges. Peitek et al., [39] demonstrated, with
the use of Functional magnetic resonance imaging (FMRI), the
existence of a correlation between such source code metrics
and the brain activation registered in users that perform
code comprehension tasks. Therefore, we compute a total of
twelve metrics (including the Halstead metrics, the cyclomatic
complexity, and the number of functions and lines of code) and
use these values to assess the difficulty of our assignments. All
values for the two assignments are reported in Table 1 (in Ap-
pendix). When crafting our challenges we used these metrics
of the tasks reported by Sutherland et al. [46] as a lower bound
to make sure that our tasks were sufficiently complicated.

After some internal experiments among the authors, we
settled for three binaries. Although we understand that three
binaries cannot provide a detailed view of the skills that expert
reverse engineers acquired after many years of practice, we
believe this choice to be a good tradeoff between the amount
of data we can collect and the time each participants would
need to invest in our exercises.

The first challenge binary was the smallest and only
served as a warm-up to make the users comfortable with
our tool’s interface. Thus, we did not collect data from this
first assignment. The other two binaries, which from now on,
we will call TEST_1 and TEST_2, were inspired by typical
reverse engineering problems in Capture the Flag (CTF)
competitions. CTFs are popular games designed to challenge
their participants to solve computer security problems. The
goal of a RE challenge in a CTF is often to recover the input
that needs to be provided to a given binary to produce a
specific output. This had the advantage that solutions are small
and can be easily verified on our side while still requiring the
participants to “understand” the full logic of the target binary.
Both the programs were written in C language and compiled
for a Linux x64 machine with the gcc compiler.

In our tests, all binaries include a target function whose pur-
pose is to print the string ’Success!!’, and the participants
were asked to submit a description of the input required by
the program to print the success string. To make things more
challenging, all binaries were stripped from their symbols and
included several “useless” snippets of codes, which had no
effect on the problem’s solution.

Test 1. The first binary consists of a simple server listening

Table 1: Complexity metrics of the two assignments
Metric Test 1 Test 2

Lines of code 146 207
Operators count 426 673
Distinct operators 35 38
Operands count 207 338
Distincst operands 89 87
Program length 633 1011
Program vocabulary 124 125
Volume 4402 7042
Difficulty 39 73
Effort 171678 514095
Cyclomatic complexity 14 19

main

useless0 useless1 bridge

target useless2

Figure 2: Call Graph of Test 1

on port 8888 and accepting new incoming connections. For
each connection, the server would I) spawn a new process
(using the fork() function) to serve as a connection handler,
II) increment a global counter, and III) invoke the target
function that would print the success string if the global
counter is equal to three. Therefore three clients need to
connect to the server to trigger the Success!! string.

The challenge requires the participants to recognize the
assembly patterns associated to simple network actions
(e.g., the initialization of the socket structures and bind(),
listen(), accept() APIs), and the parent/child relationship
during a fork(). For the sake of clarity, we sketch the call
graph of the binary in Figure 2. The figure shows in green the
three functions that need to be reversed to solve the exercise,
and in red, the three additional functions that play no role
in the solution. Two out of the three additional functions are
responsible for handling error conditions generated along
the binary. The purpose of such procedures is to assess if
participants can easily recognize and ignore functions that
only generate error messages. The third procedure is the one
that implements the connection management.

Test 2. The second binary implements a simple list manage-
ment application. The application accepts two parameters,



main

useless0 sort_case useless2

useless1 setup is_sorted length useless3 useless4

init_list is_empty

insert_node is_number

Figure 3: Call Graph of Test 2

a list of integer numbers, and one letter that specifies the
required operation: (a) – the application sums the elements
of the list and prints back the result; (r) – the application prints
the list in a reversed order; (s) – the application checks whether
the list is sorted and contains at least four elements. If both
conditions are satisfied, the program prints the success string.

This second binary is more complicated than the previous
one,and all operations are performed over linked lists of custom
data structures. To ensure that the difficulty was higher than
TEST_1, we verified that all twelve complexity metrics had
higher values than in the previous test. The challenge requires
the participants to be familiar with linked lists in assemblers
(i.e., on the way C structs and pointers are compiled in bi-
naries) and to recognize list-related operations (including a
bubble-sort implementation). Figure 3 represents the simpli-
fied version of the call graph: as in the previous case, we label as
useless the functions that are not related to the challenge solu-
tion. For all the other functions, we report their self-explanatory
name. However, the symbols’ names were stripped from the
binaries, so the participants did not have this information.

5 Participants recruitment

We ensured that all methods and experiments performed for
this work are in line with our institutions’ research ethics
guidelines and our country regulations on data collection and
retention. The participants were recruited over a period of sev-
eral months and the invitation was sent from our institutional
email address as proof of credibility. The text, reported in Ap-
pendix A, contained a complete description of the experiment
with the link to our online infrastructure. As we specify in the
recruitment email, we did not provide a compensation for our
experiments and we only collected anonymous data.

In particular, we contacted students who took a binary
analysis or reverse engineering course in three different
universities. All students had been previously trained to

Never Sometimes Often Usually
How often do you reverse ?

0

200

400

600

800

So
lu

tio
n 

tim
e 

(m
in

)

Expert
Novice

Figure 4: Relationships between how often the subject reverse
binaries and the total time spent to solve the exercises.

reverse binary programs, but while some were still beginners,
others already had experience by playing CTF competitions.
We also contacted nine different top CTF teams, asking
for players who usually solve complex RE challenges to
participate in our experiment. Overall, 95 users responded to
our request, but only 72 completed successfully the two tests.

In order to compare the effectiveness of different approaches
to read the disassembled code, we split our participants into
two groups: experts and novices. On the one hand, simply rely-
ing on the “reputation” of the participants could lead to biased
results in our data analysis. On the other hand, self-evaluation
questions can also produce biased results because humans tend
to adjust their answers depending on their concerns with the
interviewer’s perception [23, 47]. Therefore, we decided not
to divide the participants in two a priori groups, but rather to
combine their self-reported experience with the time required
to solve the tasks. First, when visiting the website, the partic-
ipants were asked how often they reverse engineer binary code
on a four-point scale in ascending order of frequency: never,
sometimes, often, and usually. Then, once all experiments
had been completed, we identified the time required by the
“worst” participant who reported to reverse binaries often or
usually (i.e., 172 minutes). Finally we adopted this value as
a threshold: participants who took less time than this threshold
are considered experts, otherwise novices. The two groups
contained respectively 33 experts and 39 novices. It is worth
noting that all CTF players ended up in the expert group.

Figure 4 shows the relationship between the answer to the
frequency question and the time required to complete the two
assignments for the two classes of users whereas the dashed
horizontal line represents the threshold we have inferred.
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Figure 5: Three distinct RE sessions of Test 1 showing the
time spent on each basic block during the session

6 Data Analysis

We now discuss the results of the participants who completed
the two exercises (39 novices and 33 experts). First of all, as
we expected, novices and experts spent a different amount of
time to complete the assignments. In fact, the two exercises
combined took between 24 and 172 minutes (92 on average)
for the subjects in the experts’ group and between 178 and
941 minutes (340 on average) for novices. In other words,
even though the exercises were relatively simple, beginners
were, on average, 3.7 times slower than experts, and the fastest
beginner was 7.4 times slower than the fastest expert.

To avoid bias, we computed the confidence intervals for the
two groups of users, with a confidence value equal to 0.95. In
this second scenario we obtained that the time required was
between 75 and 110 minutes for experts whereas it ranged
from 289 to 391 for novices.

Moreover the application of a 2-sample t-test over the two
groups in relation with the solution time confirmed us that it is

meaningful to separate the two groups in terms of time needed
to accomplish the task (t-test 9.31, p-value 3.5e-10).

We also analyzed the solution time by splitting the users
according to their answer to the initial question about how
often they reverse binaries.

As shown in Figure 4, it took on average 301 minutes for
users who answered 1 (rarely reverse binaries), 233 for those
who answered 2, 86 minutes for those who answered 3, and
finally 40 minutes for the only three experts who reported to
reverse binaries on a daily basis. This shows that while all
participants in our expert group were fast, on average, those
who perform this task more often tend to be faster.

Mining for Strategies

We started our analysis by manually inspecting the telemetry
data collected from the users’ sessions, looking for macro-
differences that could indicate the use of different strategies.
As an example, Figures 5 shows a graphic representation of
the behavior of three users during the first exercise (time is on
the X axis and BB addresses on the Y ). The horizontal bands
of different colors represent the three useful functions (those
required to solve the exercise), while the white region indicates
the BBs located in other irrelevant parts of the program. Each
dot corresponds to the user focusing on a given basic block
for a certain amount of time (expressed by the size of the
circle). The labels target and bridge respectively indicate
the function that prints the success string and the function that
has main as the caller and target as one of the callees.

The first two graphs belong to experts (the fastest in our
test and an average one), while the bottom depicts a beginner
session.

The three graphs clearly show very different approaches
to reverse the same binary. The second expert spent a
considerable amount of time on main (the red band), while
the first moved away from it after a few minutes and returned
to its code only after a first overview of the binary. Moreover,
the order of their visits is different. The first started from main
while the second user started the exploration from the target
function (where the success string is printed). However, even
if the first approach is more efficient, the first expert spent
more time looking at unrelated code (dots in the white band)
than the second (9 against 4 minutes).

The novice session appears more chaotic. It contains many
more points (i.e., BB visits), reaching a total of 3469 visited
blocks, and the user kept switching back and forth between
the three main functions, probably trying to make sense of the
entire program.

Looking at all 72 graphs, it seems like everyone has their
own style. However, we are interested in generalizing these
first observations and finding whether the strategies adopted
by experts have something in common that does not appear
in the novice sessions. We also notice considerable variance
among the experts themselves, so we want to study possible



Table 2: Prevalence of Function-level Strategies for novices
and experts while approaching the two binaries

Strategy Test 1 Test 2
Novices Experts Novices Experts

Sequential 4 - 8 -
Backward 2 6 5 8
Forward 33 27 26 25

Depth-First 0 2 1 6
Breadth-First 11 8 16 12
Hybrid 28 23 22 15

differences among users in the same group.
To perform this analysis, we first distilled the collected low-

level events into several high-level features representing ob-
servable behaviors that we could identify in our dataset of par-
ticipants. We then tested whether each feature was substantially
different between experts and novices and whether it was posi-
tively correlated to the overall solution time. While this second
aspect does not necessarily imply causation, it can still show
which set of techniques are more commonly used by those
reversers who could complete the exercise in a shorter amount
of time. Before performing the statistical test, we checked if the
data distribution (especially for time samples) was normal and,
in negative case, we applied a log-transformation to normalize
it. For each test that we executed, we collected the resulting
p-values inside a vector, and we used the Bonferroni method
to correct them with an input alfa of 0.05 (all additional hy-
potheses we tested are listed in Appendix 7). The corrected
alfa that we obtained is 1.2e-03 and all values that we report in
the paper already take into account the Bonferroni correction.

6.1 Functions Exploration

Function exploration strategies play an important role to
discover the path between the main and the target functions.
Once this path has been unveiled, users can focus on the BBs
that compose the functions in this path and therefore they
abandon their function-level strategy and drive the exploration
according to what they found. For example, if we consider
the second expert of Figure 5, we can note that she adopts
a backward approach, starting from the target and then
reaching the main function. Then, she focuses with more
attention on the BBs of such (and other) functions to figure
out how to craft the proper input to solve the challenge.

Three different ways exist to move across functions: by
following Xref, by direct access (i.e., by clicking on the
function name in the sidebar), and by following the CFG (i.e.,
by clicking on the call instructions or by using the ESC key
to step backward). Accordingly, we identified three main
exploration strategies: forward (starting from the program’s
main and following the CFG), backward (by first searching the
API call that prints the SUCCESS string and then backtracking
the analysis by following Xref references), and sequential

(i.e., by exploring each function independently of its role or
position in the callgraph).

Whenever a user explores the code of a function and
encounters a call instruction, she can decide to proceed either
depth-first or breadth-first. In the first case, the reverser visits
each function vertically until she reaches a leaf. In the other,
she explores the called functions horizontally before moving
deep into each part of the call graph. To discern between the
two strategies we cannot use standard DF and BF detection
algorithms, as users often alternate between the two methods.
Therefore, we considered a sliding window of two visits on
the call graph and compared consecutive bi-grams by looking
for typical BF or DF patterns. For instance, a typical window
of a user using a DF approach consists of two visits to different
functions following the direction of the graph’s edges. On the
other hand, the bigrams of a BF strategy contain consecutive
bigrams of the same two functions, but appearing in alternate
directions (e.g., f−g followed by g− f ).

We say that a participant predominantly uses a given strategy
if it employs it at least 50% more frequently than the other.
When this does not happen, we assign the user to a hybrid cat-
egory, which means that the reverser adopted both exploration
strategies at different points in time without a clear preference.
The prevalence of the different exploration techniques is
summarized in Table 2 for both novices and experts, and it
shows that experts and novices clearly use different techniques.
The sequential exploration is adopted by a non-negligible
amount of the beginners (4 in the first test and 8 in the second
one), but none of the more experienced reversers follow this
approach. Users in both categories prefer the forward rather
than the backward exploration. We can also see that BF visits
are much more common than DF, and it is important to note
that almost none of the novices resorted to a DF approach.

So far, we learned that experts tend to use different
strategies, but it is still unclear whether a given strategy
impacts the time required to solve the exercises. We performed
an ANOVA test by splitting the participants’ solution time into
3 groups (depth-first,breadth-first or hybrid), and applying
the one way function to these. We ran a separated test for each
challenge because some participants changed their strategy
depending on the task, but all tests failed (p-values for each
challenge were 0.17, 0.19 with effect sizes of 1.8 and 1.6 for
the forward-backward-sequential classification and 0.14, 0.2,
effect sizes of 2.1 and 1.9 according to the depth-breadth
separation). In fact, as depicted in Figure 6, all techniques
were used to efficiently solve the two exercises.

6.2 Code Selection

We now check where the reversers spent most of their analysis
time. Table 3 shows all functions in the second binary, and for
each of them, it reports several metrics. The table is divided
into two parts: the top half lists useful functions, i.e., those
involved in the solution of the problem. The bottom half
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Figure 6: Time needed to solve Test 2 grouped by strategies.

                    

                    

                    

                                        

                    

                                        

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                                        

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                                        

                    

                    

                    

                    

                                        

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                                        

                                        

                    

                    

                    

Figure 7: Average times spent in the BBs of Test 1

lists instead the five ‘useless’ functions (the binary accepts
three different commands, but only one is required to print
the success string). However, since also the related functions
include irrelevant paths (e.g., to handle error conditions), in the
first two columns we report the total number of basic blocks
in the function and the total number of ‘good’ blocks (Bgood),
which are those that must be reversed to conclude the exercise.
The table also reports how much time (both the absolute
median time and in percentage over their entire session)
experts and novices spent on each function and the overall
ratio between the experts and the novice time (last column)
computed as the absolute median time of novices divided by
the absolute median time of the experts for that function.

Table 3: Median Time Per Functions for task 2
Function BB BBgood Experts Novices Time

min (%) min (%) Ratio

main 16 12 9.1 (15.8%) 29.4 (13.9%) x3.2
sort_case 8 6 5.7 (9.6%) 18.2 (8.6%) x3.1
setup 6 4 4.4 (7.8%) 13.4 (6.3%) x3.0
is_sorted 12 10 10.4 (18.1%) 28.9 (13.7%) x2.7
init_list 8 7 8.7 (15.1%) 38.7 (18.3%) x4.4
is_empty 1 1 0.26 (0.4%) 1.0 (0.5%) x3.9
insert_node 7 6 5.8 (10.2%) 28.0 (13.4%) x4.8
is_number 9 8 4.7 (8.2%) 22.9 (10.9%) x4.8
length 4 4 3.5 (6.2%) 12.0 (6.0%) x3.5

useless-0 6 0 1.0 (1.8%) 2.8 (1.3%) x2.8
useless-1 4 0 0.5 (0.9%) 2.9 (1.4%) x5.7
useless-2 7 0 0.9 (1.6%) 2.9 (1.4%) x3.1
useless-3 4 0 1.5 (2.6%) 5.4 (2.6%) x3.6
useless-4 4 0 0.8 (1.4%) 3.9 (1.9%) x4.7

TOTAL 96 58 57.2 (100%) 210.4 (100%) x3.6

There are two interesting observations we can make from
these results. First of all, all participants spent most of their
time on main (because it was longer) and on the functions that
operate on linked lists. However, beginners were impacted
more by the nature and complexity of the function. For
instance, they spent much more time (4.8x slower than experts)
to recognize that is_number only verifies that all parameters
are integer numbers. We believe that this is due to the fact that
similar simple functionalities are encountered frequently by
reversers and therefore are easily recognized by experts.

Nevertheless, the most striking result is the fact that, in
percentage, novices spent almost the same percentage of their
time (8.6% vs 8.3% for experts) on reversing useless code
(even if in absolute terms they still spent four times more than
experts). At first, this seemed counter-intuitive. In fact, we
expected experts to be better at quickly skimming through
the code and ignoring it if it was not related to their task.
However, given the numbers in Table 3, we hypothesized that
this discrepancy is because novices were so slow to understand
the difficult parts of the code that, in percentage, they appeared
faster in discarding the non relevant ones. We computed the
same values for the first binary and we observed the same
trends even if in that case the number of functions is minor
compared to the second challenge (only 6). Indeed, the main is
still the function where users spent most of their time and the
effort dedicated to the useless functions is basically the same
in percentage (13.1% for experts vs. 12.5% for novices). For
space reasons we report the values in Table 6 in the Appendix.

Hence, we decided to measure the total number of basic
blocks that were visited by each participant. In total, the two
exercises combined contained 155 basic blocks, but only
94 (61%) of them were actually along the solution path. To
complete the two exercises, the median expert completely
skipped (i.e., never even checked once) 24 basic blocks, while
the median novice skips only 6 of them. Indeed, this fact
shows that experts could cut entire branches (or functions) by
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Figure 8: Progression of Top5 and Bottom5 experts in the
second challenge.

only looking at a few of their blocks.
For instance, Fig. 7 shows the CFG of Test 1. The green

edges point to interesting BBs while the red ones point to
useless BBs. Each node is split in half: the intensity of the
left side represents the amount of time spent on that BB by
the experts (on average); the right side represents the same
for novices. If we consider the noninteresting paths, the blue
intensity is generally higher than the red. Experts mostly
recognize that some code parts lead to useless BBs by just
reading the first BBs of that function and then recovering the
correct path to the target function. Novices instead needed
to go through also the noninteresting parts of code before
understanding that they do not need them for their purposes.

Finally, we performed a 2-sample t-test using as an hypoth-
esis the correlation between the group (i.e., expert/novice) and
the time spent on non-useful portions of code. With a p-value
of 5.3e-04 and a t-test of 4.86 we can conclude that indeed
there are statistically significant differences in the way the two
groups of participants look at the non-interesting parts of the
binary.

6.3 Birdseye Overview

Experiments on code comprehension conducted by Uwano
et al. [51], and independently validated by [44], have found
that users often perform an initial scan of the entire codebase
to get a general idea of what the program is supposed to do.
During this initial scan, the authors found that programmers
went through 70% of the code in the first 30% of their analysis.

By looking at the reverse engineering sessions we collected
in our experiments, we can clearly identify some reversers
performing such preliminary scans. However, this behavior
is not as typical as one might expect. In fact, in our data, only
36.0% of the experts visited 70% of the code blocks in the
first 30% of their time. On average, at the 30% mark, expert

reversers had visited only 48.2% of all BBs. The number
increases to 53.4% (still well below the 70% threshold) if
we only count the good basic blocks and ignore those that
were not relevant for the task. Beginners tended instead to
move through each BB much quicker at first and to return back
multiple times during their sessions to read again the code (we
will analyze this aspect in Section 6.4). As a result, 69.4% of
them met the 70% threshold at the 30% mark.

But there is more. Figure 8 shows the Cumulative Distribu-
tion Function (CDF) of the visited BB over time by comparing
the top five experts (based on their solution time) against the
bottom five. It is interesting to observe that the fastest reversers
(in red) progressed more linearly and did not employ any
initial survey strategy.2

This seems to suggest that a preliminary overview of the
entire binary might be useful to get an orientation in large
codebases, but it might not be very useful in smaller exercises.
Even more surprising, we found that the majority of experts
did not even ‘try’ to quickly skim through the code of the
various functions, even though they did not know in advance
anything about the complexity of the task.

Figure 8 also confirms what we found in the previous section,
i.e., that all best reversers were not fastest only because they
could read and understand the code faster, but also because
they reversed less code. On the far right of the CDFs we can see
that the red curves terminate between 60% and 80% of the total
BBs (remember that only 61% were along the solution path),
while the blue lines fall in the range between 80% and 100%.

6.4 Basic Blocks Exploration
After looking at the function granularity, we now focus our
attention on individual basic blocks.

Thanks to the use of the restricted focus viewer, our reverse
engineering platform can accurately track the time spent by
each participant on each individual BB. However, not all these
time events are equally important. For instance, it can occur
that when moving the mouse pointer between two BBs, the
user accidentally moves the mouse over an intermediate BB
without being really interested in its content. Our infrastructure
would capture this behavior, generating an event for all three
BBs. To remove the noise introduced by these spurious events,
we decided to conservatively discard all the views with a
duration below 500 milliseconds. This threshold is based on
the fact that, according to Rayner et al. [42], while reading text,
the eyes stay upon each single location from 100 ms to over
500 ms. Given the fact that a BB is often composed by multiple
lines, this threshold ensures that a participant had time to focus
on at least one location in the BB. Anything below that would
not provide much information to the reverser.

It is essential to understand that the time a reverser spends
on a single BB is affected by multiple factors, including the

2This trend does not change if, instead of basic blocks, we perform the
measurement at a function granularity (we omit the graph for space reason).
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BB complexity, the user assembly reading skills, the role of
the block inside the binary, the navigation strategy of the user,
and the state of the ongoing RE session. We will try to break
down these factors in the rest of the section.

To begin with, for each BB we identify three different time
values. First, the time each user spent on the block the first
time she encountered it (Tf irst). Second, the total cumulative
time (Ttot) each user spent on the BB over the entire exercise.
And finally the longest consecutive time each user spent on
the block (Tmax).

By comparing these three time intervals, we can make sev-
eral interesting observations. Figure 9 shows the distribution
of the median time spent by each user over all the basic blocks
of the two exercises. It is interesting to note how, the first time
they encounter a new basic block, both experts and novices
spend only a few seconds on its code: on average 1.3s for
beginners and 1.5s for experts. Instead, the maximum and
total time spent on the blocks are over one order of magnitude
higher, often lasting for tens of seconds (6.8s vs 21.9s for Tmax,
and 16.3s vs 73.4s if we compute the median times for the
Ttot). As a confirmation of this aspect, we ran the 2-sample
t-test over the values of Tf irst , Tmax and Ttot collected over
each user and then separated by novices and experts. Indeed,
we obtained that the difference for the first visit (Tf irst) is not
statistically significant (p=0.2) but the time difference on Ttot
and Tmax are (respectively with p=7.4e-07 and p=1.5e-08).

At first, one might easily dismiss the role of these first
short visits, nothing more than a quick glance at a block
while the user rapidly moved the mouse over it. It might seem
obvious that the ‘real’ reverse engineering is performed over
the subsequent visits. However, if we compute the fraction
of BB that a user visited only once we see that things are
more complex. On average, experts visit 28% of the BBs
only once. In 80% of these cases, the visit lasted less than two
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analyzed on the first visit.

seconds. This means that experts dismiss almost 22% of the
basic blocks in a single glance. On the contrary, inexperienced
users make a single visit only for 10% of the BB, and in total,
dismiss only 7% in less than two seconds.

All the remaining BBs are visited by each reverser multiple
times. In fact, even if the two programs combined contained
only 155 BBs, to complete the two exercises, experts visited,
on average, 1368 basic blocks and novices 4326 (2-sample
t-test=9.7 and p=6.8e-12). Figure 10 shows the relationship
between the time required to solve the challenges and the
number of visited blocks.

However, visiting a block multiple times is not always a sign
of inefficiency, and in some instances it is even unavoidable
(e.g., those blocks that contain a function call are often
re-visited when the user moves out of the function and back
to the callee). We ran the Pearson correlation to test if a



Table 4: Correlations between visits duration and BB length
Experts Novices

Hypothesis Pearson p-value Pearson p-value

Tmax and len(BB) 0.29 1.0e-04 0.31 5.8e-04
Ttot and len(BB) 0.30 8.28e-04 0.33 1.6e-04

Tf irst and len(BB) 0.37 1.9e-05 0.37 1.3e-06

relationship exists between the number of times the users go
through an already visited BB and the overall solution time
and obtained a result of 0.68 (p-value 1.2e-05) for experts and
0.46 (p-value 2.5e-04) for novices. Therefore we investigated
this aspect in more detail and computed the number of times
the first visit to a basic block was not the only one, but it was
the longest (i.e., Tf irst ==Tmax).

If we assume the most prolonged visit is when the user
actually completely reversed the BB code, we can use this
indicator to know whether this is performed for the first time
the reverser encounters a new code. In this case, the median
is 9.6% of the BB for beginners and 14.8% for experts. Again,
it seems that experts tend to fully understand the code the first
time they read it, while beginners go back multiple times, and
in 80.6% of the cases, their first visit is not the one where they
reason the longer on the code.

Finally, it is interesting to test if these short first visits
are just a consequence of the fact that a reverser might be
simply faster at processing assembly code. In other words, we
wanted to test whether those users that have shorter first-time
visits (Tf irst) also spend less time overall on the BBs (Ttot).
However, the Pearson correlation of the 2-time values is−1.2,
p-value=0.5, showing no statistically significant correlation.

Figure 11 shows how a scatter plot of the two aforemen-
tioned metrics (percentage of blocks visited only once, and
for which the first visit is the longest) can clearly separate the
majority of the experts from novices reversers.

6.5 Speed Factors

In our final analysis of the different reversers’ speed, we look
at which factors affected the time spent on individual basic
blocks.

For this purpose, we limit our analysis to those blocks that
actually needed to be understood in the first place. Thus, we
first remove those BB that are NOT related to the solution of the
exercise as well as all headers and footers of the functions (as
it might not always be required to analyze their behavior care-
fully). The remaining (which we will refer to as BBcore, and that
account for 47% of all blocks in the two assignments) capture
the code each user had to reverse to reach the correct solution.

The first hypothesis that we wanted to formulate was to
study the potential correlation between the time spent on each
block and the size of the block itself. Indeed, we observed that
the first, total and max times are positively correlated to the

Table 5: Statistical tests w.r.t. the branch selection data (upper
part) and the semantical elements data (lower part)

Hyphothesis Result p-value

Novices true branch & solution time 0.21 0.06
Novices close branch & solution time 0.13 0.2
Experts true branch & solution time 0.42 0.7
Experts close branch & solution time 0.87 0.4

2-sample T-test Comments 0.4 0.6
2-sample T-test Variable Renames 0.8 0.4
2-sample T-test Function Renames 0.7 0.4

number of assembly instructions contained in the basic block.
However, the exciting result is that the Pearson correlations are
quite small for Ttot and Tmax while they exhibit an higher value
for Tf irst as reported in Table 4. Moreover, under the same hy-
pothesis, the correlations are always more elevated for novices.

One way to interpret these results is that the amount of time
spent by reversers on a basic block is only marginally influ-
enced by the time required to actually read (or ‘parse’) each
assembly instruction. The impact is more visible for inexpe-
rienced reversers (who probably spend more time reading the
assembly) and less on experienced users. To understand which
other factors contributed to the reversing time, we extracted
the top 5% of the basic blocks in which each user spent most
of her time. Then we compared all sets to identify those blocks
that were problematic for a large percentage of users.

If we look at total or max time, both experts and beginners
spent most of their time (respectively 19% and 18% on
average) on blocks that prepared the function call parameters.
While usually straightforward to reverse, all reversers probably
paused to reason about which values were passed to the
function’s parameters. If we look instead at the blocks that
frequently appear among beginners but not among experts, we
find a total of 20 BBs that are shared between a minimum of
3 and a maximum of 11 novices and that are responsible for an
additional 9% of time on average overall. We analyzed them
to unveil the assembly language (ASM) patterns that slowed
down the novices while reading them. In total 6 blocks contain
uncommon instructions (such as setnz, imul, and sar) and
7 include instructions that operate with in-memory data struc-
tures, thus requiring to reason about the memory layout of the
program in that specific moment (e.g., instructions that access
the i-th element of the list of Task 2). We also found 3 BBs that
operate on the static strings contained in the binary. Among
these 20 BBs only 4 of them have a number of instructions ma-
jor than 10 while the other 16 contains less than 6 instructions
(and in 10 cases they were just 3 instructions long). This finally
shows that the nature of the instructions is more relevant than
their number to explain the comprehension time for beginners.



6.6 Other Aspects
In the previous sections, we discuss several aspects we believe
can capture subtle but essential characteristics of the behavior
of either experienced users or beginners. We also tested many
other hypotheses and tried to isolate other behaviors (reported
in Appendix 7) but for which we could not find any statistical
difference among our users. For these hypotheses that did
not find a statistical validation we report the p-value that we
obtained after running the Pearson correlation, but we omitted
the correlation value itself for space reasons, since it was not
meaningful. However, we want to add two more short points to
our analysis regarding the impact of the user interface in branch
selection and the other events we collected from our platform.

Branch Selection - when visiting a conditional BB for
the first time, beginners choose to explore the true branch
first in the 41% of the cases, whereas experts followed the
true branch in the 42%. However, we found that the physical
position (on screen) of the basic block is much more important
than its logical one. In fact, our results show that both experts
and novices tend to simply visit first the closer basic block,
respectively in 87% and 88% of the cases they encounter a
branch. Finally we tested the hypothesis that the choice of
either true branch or close branch as a next step has an effect
on the overall time to reverse engineer the binary. However
for both experts and novices we obtained p-value > 0.1 (values
are reported in Table 5).
Comments and Rename Actions - we also investigated the
use of the other features implemented in our infrastructure:
comments, variable renames, and function renames. On aver-
age, we recorded 24 comments among all the expert sessions,
whereas we count only 11 from novices. The same trend
happens for variable renames (19 vs. 7) and function renames
(12 vs. 2). One more time we applied the 2-sample t-test for
each of the semantical elements created by the user, divided
for experts and novices. The results of the test (reported in
Table 5) show no statistical significant relationships between
these features and the users performance. At a first look,
this result looks like surprising as we would expect that a
statistical significancy exists between the usage of semantical
elements, the solution time and the experience level. However
our hypothesis for this behavior is that probably the statistical
relationship between the use of semantical text fragments and
the RE performances become more and more evident while
observing this on larger and more complicated codebases
(potentially together with other reversers with the same
experience and working in the same team). We will discuss
more carefully about challenge design limitations and future
directions respectively in Sections 8 and 9.

7 Summary of Findings

In this study we quantitatively measured the behavior of 72
reversers, both experts and novices, over a total of 272 hours of

RE activity. By looking past the individual features discussed
in the previous section, we will now summarize the main
findings that emerged from all our results.

First of all, we found that each user is unique and has her
strategy and her way to reverse binary code. However, by
looking under the apparent diversity of actions, we can identify
a number of core strategies. To begin with, novices move
prevalently forward from the program’s main while experts
mix forward and backward movements. While statistically the
difference is clear, there are notable exceptions in all groups,
showing that one can be very efficient independently from the
strategy it adopts (except for the sequential scan that is only
used by the very beginners).

Experts also exhibit a more linear progress, avoiding to
jump back and forth among the same basic blocks they already
visited in the past. Moreover, they make every visit count,
even the first one. This allow them to dismiss 22% of the basic
blocks in a single observation, which often last less than two
seconds. The 70-30 birdseye scan observed several times in
studies of program comprehension does not seem to apply
to binary reversing, at least at the small scale dictated by our
exercises. Instead, the experts’ ability to quickly identify and
ignore the regions that were not relevant for their task was
one of the essential aspects that distinguished experienced
users from beginners. This, which fits the self-reported
techniques that Votipka et al. [53] group under the name of
subcomponent scanning could, in fact, be related to the ability
of the expert’s brain to recognize code patterns, but more
focused experiments (e.g., with brain EEG sensors) are needed
to investigate further and validate this hypothesis.

Finally, our experiments show that the number of instruc-
tions is a very poor predictor of the time required to understand
a piece of code and that the presence of less common
instructions has a more noticeable impact only on novices.

8 Limitations

When we designed our experiments, we had to make many
choices to balance the difficulty of the problems (and,
therefore, the time required for completing the exercises),
the amount of data we could collect, and the impact of our
instrumentation on the user experience. These choices might
have introduced biases in the results or might have prevented
us from observing some aspects of the users behavior.

Expertise - In our study, we measure the expertise of a user
in three ways. First, based on “reputation”, i.e., by inviting
as experts only those users that can already solve very difficult
reverse engineering challenges. Second, by the frequency
on which each user reverses binary files (as reported in the
questionnaire during registration), and finally by the total
time required to solve the two assignments. However, one
may argue that a good reverser does not necessarily need to
be fast—but some may prefer instead to be meticulous and



precise in her findings. New experiments should be designed
only for expert reversers to measure this aspect by providing
them with more challenging assignments where precision may
be more important than speed.

Restricted Focus Viewer - The use of a RFV to capture the
part of the code a user is currently focusing on is a standard
methodology in comprehension experiments. While it allows
for remote participation without the burden of on-site (and
uncomfortable) eye-tracking solutions, this choice also intro-
duces some limitations. First, it impacts each participant’s
overall speed. It also prevents glances, in which users quickly
look at a different basic block, maybe just to check a register or
the final instruction. In our settings, this requires moving the
mouse, and therefore users might perform this task less often
than in an unconstrained environment. We can also hypothe-
size that the issue with the glances affects the order in which
basic blocks are visited. Another potential drawback is that it
could technically discourage the participants from using the
birdseye overview (Section 6.3), forcing them to rely mostly
on their own memory to remember a previously visited basic
block. However, this affects only a reduced number of cases:
moving the mouse back to a previous basic block is “expen-
sive” only if we want to quickly recall a specific location of
that block (e.g., a register, a single ASM line) as in the case of
glances, but it becomes fundamental, therefore justifying the
time “expense,” if the participant wants to entirely read the BB.

These factors can affect the code comprehension process
by distorting the way it is performed. In absence of RFV,
we could expect a higher number of glances and therefore a
shorter time to discard some blocks of code. Unfortunately the
only way to determine how the RFV influences our findings
would be to compare it with some data collected using the
same tool without RFV, which is impossible by design. Thus
we can only acknowledge this limitation and hope that future
studies will be able to overcome it with different technologies
or with a different experiments’ design (e.g., smaller group
of experts monitored with eye tracking devices).

Nature/Number of the Exercises - It is possible that the tasks
we ask the participants to perform may affect the ecological va-
lidity of the behaviors we observed in their session. In particu-
lar, more difficult problems and larger codebases could require
different strategies or help identify other aspects that differen-
tiate one expert from the others. However, in this measurement
study, we wanted to include beginners and, therefore, opted for
tasks that could be solved (even if with more significant effort)
by non experienced reversers. While the number of tasks could
be extended , this would increase the time to complete our as-
signment, especially for some participants who already spent
several hours with the current configuration (and that are not af-
filiated to our group). Even if this represents a limitation of our
work, it is probably an inevitable choice given our initial goals,
i.e., to involve many users ranging from the “newbie” to the
“elite” hacker and compare them on the same set of challenges.

We hope that future studies will either confirm (or disprove) our
results with larger and more difficult binaries to reverse. For ex-
ample, we can hypothesize a more frequent use of the birdseye
overview (described in Section 6.3), which in our experiments
was used only by a small percentage of experts. Another aspect
that is largely related to the size of the binaries is the number of
functions, and therefore we expect a more pronounced impact
of the different strategies described in Section 6.1 on larger
programs. For instance, an initial horizontal investigation can
be beneficial when analyzing larger codebases.

9 Implications and Future Work

The first area that would benefit from a solid comprehension
of the RE process is teaching and training. Several features
we identified are correlated with experience, but this does
not mean that could not be improved by performing specific
exercises. As of now, RE learning is mainly based on the
resolution of binary challenges of increasing complexity [14].
A possible implication of our findings could be to design binary
analysis exercises more focused on a few BBs, to stimulate
a student to match and memorize patterns. Concerning these
ideas, currently, we are trying to integrate them into the RE
courses organized by our institute.

If teaching RE to humans is essential to form new experts
in the RE domain, training computers to mimic human behav-
ior would be fundamental to scale over the large amount of
software/malware released every day. We believe that study-
ing the techniques used by humans is the first step to discover
new ways to train machine learning models to perform simi-
lar tasks. Psychologists have learned that many activities are
inherently linked to the ability to recognize previously seen
patterns [19,31,55] and that the experts are those who learned a
significant number of patterns over several years of experience.
Since learning to recognize patterns is what ML algorithms can
do well, we also studied which aspects human experts focus
their attention on to provide the building block for further stud-
ies on such topics. Extending the concept, we could even intro-
duce semantic awareness in the classifier. For instance, many
experts in our experiments could easily recognize non-standard
implementations of the list operations related to the second
challenge or discard branches/functions by just reading a sub-
set of the related BBs. This suggests that ML classifiers could
be trained to mimic this behavior and to automate the pattern
recognition phase both for useful and useless portions of code.

Moreover, even though our study does not put a particular
emphasis on the usability issues, we deem that some insights
(such as the fact that proximity in the UI view guides the
reversers’ exploration) can also improve the current interface
of reverse engineering tools to make the human activity even
more effective.

Finally, we can hypothesize implications of our work with
research fields that do not necessarily fall under the RE cat-
egory. For instance, authors of [13, 52] conducted a user study



about the effort needed to violate source code obfuscation tech-
niques. In this context, one of their limitations was that they
could not perform fine-grained measurements. Therefore, we
argue that our methodology (i.e., the use of RFV with its pros
and cons) could provide meaningful input in these scenarios.

The presented ideas and implications are only a subset
of the possible consequences of more advances in the RE
field. Indeed, as explained in the limitations (Section 8), our
measurements came at the expense of many restrictions in the
scope of the study. Future work will have the role to focus on
the many aspects that remained uninvestigated, thus offering a
broad range of research directions that can result in even more
implications. The first thread is to dedicate a set of experiments
for a group of expert-only participants considering more
complicated challenges. Besides that, another branch is
definitely to focus on other RE aspects which belong to a more
specific domain, such as malware analysis or vulnerability
discovery. Also, the methodology will play a fundamental role
in future research, preferring remotely accessible solutions for
studies over a large group or eye-tracking devices for smaller
groups. We hope, with our work, to provide significant input
for many other papers about this topic that still has so many
questions that need to be answered.

Furthermore, our study presents itself with an exploratory
spin, which justifies why we tested many hypotheses along our
road. It is important to understand that such hypotheses (also
those ones reporting p-value = 0) represent for now promising
theories that need more validation before becoming actual
findings. Therefore, because this field is still in its infancy, we
invite future researchers of this topic not to assume our isolated
behaviors as the final word, but rather to validate/invalidate
them with different experiments and methodologies.

10 Conclusions

Drawing inspiration from the first set of interviews conducted
by Votipka in 2020 [53], the objective of our study was to
lay the second brick towards a solid understanding of the RE
process from an assembly code comprehension perspective.

A deep understanding of the topic can help us from different
points of view and has a few interesting implications that
should be taken into account. With our work, we hope to
provide a valuable input for future research in a field that, so
far, was poorly explored.

In the spirit of open science, we release 3 the source code
of our web RE framework together with the challenges and the
test scripts, to allow the community to continue further studies
in this direction. Lastly, our measurements are summarized
in Table 8 in the Appendix.

3https://github.com/elManto/REmind
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Appendix

A Text of the invitation email

Experiment purpose
A study about how humans coming from different back-

grounds and expertise levels (from the ’noob’ to ’expert’)
perform the process of Reverse Engineering and which are
the main differences between these categories.

Before starting
The test is completely anonymous, the registration is

mandatory but it is quick (just a self-evaluation question). The
system will give you a token which is needed for the login, so
please preserve it until the end of the test.

The test
For the test, you can find our web-UI at this link

(https://reverse.s3.eurecom.fr): it supports some of
the main features for RE (commenting code, rename, Xref,
...). After accessing it, the first page comes with a further
description of the experiment and of the interface (we invite
you to read for the details) and with a list of 3 challenges
that you have to solve with our web-UI. The first challenge
(’Warmup’) is just a warmup one so it is optional and we
created it just to make the user become more familiar with
the tool. The second and the third challs (namely ’Test 1’ and
’Test 2’) represent the core part of the experiment. Clicking
on one of the two tests starts the RE interface. From now on,
your job consists of understanding what the binary does and
then submitting a solution in the proper form. You can solve
the 2 tests in separate moments and you can stop a RE session
and then re-start it (even if we think the best thing is that you
stop the RE session after submitting a solution).

Submitting a solution
Note that for the two tests (Test 1 and Test 2), the solution is

not required in a specific format (like the flags in a CTF), but it
is supposed to be a short description in your own words (just 1
or 2 lines) about the needed steps that make the binary to print
the string ’Congratulations’ or ’Success!’. Alternatively, also a
command line that triggers the correct path in the binary is fine.

Notes
• The interface is not supposed to be a new competitive

product, but it is just a tool for the data collection. This
does NOT aim to be a “realistic scenario”, but a “scenario
for which we capture some interesting data”. It’s an
experiment! Please bear with it :-)
• The experience could result a bit painful because basic

blocks are blurred when the ’onmouseover’ event is
captured on another BB. Although we fully understand

Table 6: Median Time Per Functions for Task 1
Function BB BBgood Experts Novices Time Ratio

mins (%) mins (%) Time Ratio

main 23 17 14.6 (44.6%) 65.3 (45.4%) x4.4
bridge 12 9 11.4 (34.9%) 52.3 (36.3%) x4.5
target 3 3 2.4 (6.3%) 8.2 (5.7%) x3.4

useless-0 1 0 0.17 (0.5%) 0.60 (0.42%) x3.5
useless-1 4 0 0.58 (1.8%) 2.07 (1.4%) x3.5
useless-2 16 0 3.5 (10.8%) 15.4 (10.7%) x4.4

TOTAL 59 29 32.6 (100%) 143.8 (100%) x4.4

Table 7: Additional hypothesis (not discussed elsewhere)
Hyphothesis p-value exp p-value nov

First quartile of time spent on a BB and
BB length 0.1 0.6

Interquartile of time spent on a BB and
BB length 0.06 0.07

Average of time spent on a BB and
BB length 0.08 0.1

Mode of time spent on a BB and
BB length 0.4 0.7

Tf irst and Tmax 0.3 0.2
Tf irst and Ttot 0.8 0.8
Solution time and number of BBs she
skimmed (i.e., she did a quick look at BB
and then a longer one to the same BB)

0.4 0.5

Solution time and how many times the user
went back to the previous BB instead of
going forward

0.1 0.2

Glanges (i.e., visits of less than 2 seconds)
and BB length 0.1 0.1

Solution time and how many times she went to
a true branch 0.8 0.1

Solution time and how many times she went to
a close branch 0.3 0.2

this makes the RE process slower, this is needed for some
aspects we are trying to collect. So, yes, this is NOT your
IDA experience you are looking for... it’s an experiment!
Please bear with it #2 :-)
• For the tests (’Test 1’, and ’Test 2’), we disabled the

’Strings’ view. Also in this case, the reason is linked with
our models and the data we need to collect. So do not
worry if you cannot access the ’Strings’ view, there is no
bug, it is just a design choice.
• In general, we are interested in static analysis, not

dynamic one. This explains why we did not add a
debugger to the tool. If you are used to reverse with a
debugger, that’s good! But for this experiment we are
interested to know how you would approach a purely
static analysis task!
• There is no ranking or prize, this is just an experiment:

so please do not cheat.

Thanks a lot for your time/help!

https://reverse.s3.eurecom.fr


Table 8: Individual Experts Features
User Solution Time Function Exploration (Test1 ; Test2) Transitions Tfirst=Ttot Tfirst=Tmax Skipped BB
Exp.1 169 Forward,Hybrid;Forward,DFS 2997 16.7% 14.8% 18
Exp.2 137 Forward;Hybrid;Forward,BFS 2551 15.4% 8.3% 19
Exp.3 120 Forward,BFS;Forward,DFS 1662 29.6% 12.9% 24
Exp.4 120 Backward,Hybrid;Backward,BFS 978 29.8% 16.7% 30
Exp.5 163 Forward,Hybrid;Forward,BFS 1654 35.6% 17.2% 4
Exp.6 137 Forward,Hybrid;Forward,Hybrid 2359 18.7% 14.1% 15
Exp.7 134 Forward,Hybrid;Forward,DFS 2845 22.5% 8.3% 21
Exp.8 119 Forward,Hybrid;Forward,Hybrid 1750 29.6% 7.7% 30
Exp.9 156 Forward,Hybrid;Forward,Hybrid 2070 13.5% 21.2% 4
Exp.10 162 Backward,Hybrid;Backward,Hybrid 2141 25.1% 9.6% 24
Exp.11 37 Forward,Hybrid;Forward,Hybrid 450 46.4% 14.8% 31
Exp.12 34 Backward,Hybrid;Backward,Hybrid 727 35.4% 16.7% 25
Exp.13 118 Forward,BFS;Backward;Hybrid 1546 9.6% 18.7% 2
Exp.14 119 Forward,BFS;Forward,BFS 1842 11.6% 14.8% 4
Exp.15 96 Forward,BFS;Forward,BFS 1564 19.3% 17.4% 23
Exp.16 154 Forward,Hybrid;Forward,BFS 2547 10.9% 14.8% 1
Exp.17 80 Forward,BFS;Forward,DFS 1321 23.8% 16.7% 13
Exp.18 48 Forward,Hybrid;Forward,BFS 761 34.8% 10.9% 41
Exp.19 81 Forward,BFS;Backward,BFS 746 40.0% 13.8% 3
Exp.20 48 Forward,Hybrid;Forward,DFS 818 22.5% 21.2% 34
Exp.21 38 Forward,BFS;Forward,BFS 483 47.7% 6.4% 27
Exp.22 43 Backward,DFS;Backward,Hybrid 627 41.2% 20.0% 29
Exp.23 44 Forward,Hybrid;Forward,Hybrid 673 39.3% 16.7% 32
Exp.24 27 Backward,Hybrid;Backward,DFS 462 46.4% 20.6% 30
Exp.25 29 Forward,Hybrid;Forward,Hybrid 634 36.1% 23.8% 45
Exp.26 45 Forward,Hybrid;Forward,Hybrid 789 35.4% 18.0% 27
Exp.27 64 Forward,Hybrid;Forward,Hybrid 835 45.1% 11.6% 21
Exp.28 70 Forward,Hybrid;Forward,BFS 1478 31.6% 10.9% 24
Exp.29 32 Forward,Hybrid;Forward,Hybrid 820 38.7% 14.1% 23
Exp.30 89 Backward,DFS;Backward,Hybrid 1415 14.1% 15.4% 8
Exp.31 171 Forward,Hybrid;Forward,BFS 2115 10.9% 10.9% 26
Exp.32 56 Forward,BFS;Forward,BFS 517 45.8% 14.8% 44
Exp.33 106 Forward,Hybrid;Forward,Hybrid 988 38.0% 17.4% 24

Nov.1 266 Forward,Hybrid;Backward,Hybrid 3330 5.8% 10.3% 2
Nov.2 329 Forward,Hybrid;Forward,BFS 5114 7.7% 6.4% 7
Nov.3 304 Forward,BFS;Forward,BFS 5025 14.1% 8.3% 13
Nov.4 208 Forward,Hybrid;Forward,BFS 3793 12.9% 9.0% 9
Nov.5 260 Forward,Hybrid;Forward,Hybrid 3560 20.0% 5.1% 19
Nov.6 257 Forward,Hybrid;Forward,DFS 4136 8.3% 8.3% 4
Nov.7 264 Forward,Hybrid;Backward,Hybrid 3433 5.1% 9.0% 1
Nov.8 331 Forward,Hybrid;Forward,Hybrid 3805 3.2% 10.9% 0
Nov.9 303 Forward,Hybrid;Forward,Hybrid 3892 16.1% 9.6% 20
Nov.10 415 Forward,Hybrid;Forward,BFS 7602 12.2% 3.8% 10
Nov.11 371 Forward,BFS;Forward,BFS 4796 9.6% 10.3% 8
Nov.12 381 Forward,Hybrid;Backward,Hybrid 4514 16.1% 9.1% 17
Nov.13 258 Forward,Hybrid;Forward,BFS 2374 1.2% 10.3% 0
Nov.14 458 Sequential,Hybrid;Sequential,Hybrid 6955 4.5% 6.4% 1
Nov.15 251 Forward,Hybrid;Backward,BFS 3067 24.5% 14.8% 22
Nov.16 409 Forward,BFS;Forward,BFS 5656 4.5% 9.6% 2
Nov.17 481 Forward,BFS;Sequential,BFS 6270 8.3% 4.5% 9
Nov.18 560 Backward,Hybrid;Sequential,Hybrid 6976 5.1% 7.1% 1
Nov.19 194 Forward,Hybrid;Forward,Hybrid 2791 7.7% 13.5% 1
Nov.20 351 Forward,Hybrid;Forward,Hybrid 3685 4.5% 10.3% 1
Nov.21 301 Forward,Hybrid;Forward,Hybrid 5020 10.3% 10.9% 3
Nov.22 228 Backward,BFS;Backward,Hybrid 2841 16.1% 12.2% 19
Nov.23 300 Forward,BFS;Forward,Hybrid 3091 7.7% 12.3% 6
Nov.24 195 Forward,Hybrid;Forward,Hybrid 2592 6.4% 14.1% 0
Nov.25 261 Forward,Hybrid;Forward,BFS 2510 11.6% 13.5% 3
Nov.26 240 Forward,BFS;Forward,BFS 3050 15.4% 9.6% 11
Nov.27 740 Sequential,Hybrid;Sequential,Hybrid 7879 6.4% 13.1% 8
Nov.28 543 Forward,Hybrid;Sequential,Hybrid 6641 2.5% 7.7% 0
Nov.29 941 Sequential,Hybrid;Sequential,Hybrid 8150 0.0% 1.9% 0
Nov.30 320 Forward,BFS;Forward,BFS 2912 12.5% 7.1% 16
Nov.31 316 Forward,Hybrid;Forward,BFS 2886 18.7% 10.9% 13
Nov.32 234 Forward,Hybrid;Forward,BFS 4048 7.7% 6.4% 3
Nov.33 181 Forward,BFS;Forward,BFS 3445 12.2% 8.3% 10
Nov.34 207 Forward,Hybrid;Forward,Hybrid 2202 29.0% 9.6% 26
Nov.35 513 Forward,BFS;Sequential;Forward,BFS 6233 0.0% 4.5% 0
Nov.36 199 Forward,Hybrid;Forward,Hybrid 3408 18.7% 6.4% 17
Nov.37 178 Forward,BFS;Forward,Hybrid 1618 5.8% 19.3% 3
Nov.38 441 Forward,Hybrid;Sequential,Hybrid 5946 6.4% 8.3% 1
Nov.39 253 Forward,Hybrid;Forward,Hybrid 3486 21.9 10.9% 7
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